Second Annual Conference on Carbon Sequestration May 5-8, 2003

Carbon quantification of diverse landscapes using multi-spectral 3D digital aerial imagery: complex pine savanna in Belize as a case study

Sandra Brown, D. Slaymaker, & M. Delaney—Winrock International

D. Novelo & W. Sabido— Programme for Belize

Acknowledgements

- Support from the Conservation
 Partnership Agreement with TNC who receives support from NETL
- Colleagues Bill Stanley, Ellen Hawes, Eric Firstenberg, and David Shoch

Pine savanna of Belize

Pine savanna associations

How to measure the carbon stocks in this complex system

- Consists of many sub-types but difficult to stratify as they are widespread with no distinct boundaries
- Because very heterogeneous, would need many ground plots to sample for high precision
- Not only a large number of ground plots but also would require a lot of harvesting of plant material because system is characterized by pine and hardwood trees, woody shrubs, palmettos, grasses

Goal of study:

- Determine if multi-spectral, 3D aerial digital imagery (M3DADI) system can decrease the need for extensive ground measurements while creating accurate and precise carbon estimates in a cost-effective manner
- Two steps:
 - Collect and analyze digital imagery
 - Collect and analyze ground data to use in combination with imagery

Multispectral 3D aerial digital imaging system

The digital imaging system includes a digital gyroscope and pulse laser along with dual digital cameras, fly transects and construct georeferenced mosaics that can be displayed in 3D

Multispectral 3D Aerial Digital Imaging System

- Fits in a portable camera pod,
- Will fit into commercial airline luggage
- Attaches to any Cessna

Collection of digital imagery

Analysis of digital imagery

Example of M3DADI data in 3D

This 3D approach provides methods for studying and mapping terrestrial systems

Noel Kempff Mercado National Park, Bolivia

These models can be interacted with data from a laser to calibrate tree height, measured, and re-flown to monitored change in the forest on an individual tree level.

Analyze ~1 ha plots on the imagery to obtain area of crowns or cover and tree heights

Areas of each vegetation type per plot

	Total						
Plot	plot	Grasses	Shrub	Pine	Palms		
number	Area (m^2)						
1	10,000	8,721	376	522	281		
2	9,933	5,700	2,959	1,087	187		
3	10,204	3,792	2,919	3,039	455		
19	9,855	5,590	3,256	908	101		
20	9,777	5,321	3,406	1,008	42		
Total (m ²)	192,424	98,765	62,836	23,967	9,378		

Field data analysis

- From imagery can measure:
 - crown area and height of trees
 - area of canopy cover of shrubs and palmetto and height classes
- From destructive harvest methods develop robust relationships between measurable indices from the imagery and biomass carbon for all plant types

Pine trees: relationship between biomass per tree and crown area x height

Shrubs: biomass per unit of crown area versus height

Calabash trees: biomass and crown area x height

Palmetto: trend in biomass with height

Carbon stocks by vegetation type

Plot number	Pine t C/ha	Shrub t C/ha	Palms t C/ha	Grass t C/ha	Total t C/ha
1	3.4	0.4	0.2	2.6	7.1
2	7	3.0	0.1	1.7	11.8
19	5.3	3.3	0.1	1.7	10.3
20	6.1	3.4	0.0	1.6	11.1
Stats					
n =	19	19	19	19	19
Mean	7.7	3.3	0.4	1.5	12.9
SE	1.3	0.5	0.07	0.2	1.2
C.V.	72.4	64.9	76.8	44.0	40.6
(%)					
95% CI	25.7	22.4	29.6	15.7	16.1
(% of					
mean)					

Total biomass carbon is a function of pine tree crown area

Next steps:

- Reduce and quantify uncertainty of field measurements
 - Intensify field sampling of shrubs, palmettos, and grasses to improve relationships with digital imagery measures
 - Fill in some gaps in tree data, especially larger diameter trees
 - Estimate total error from application of various regressions

Next steps:

Improve digital imagery analysis:

- Collect new imagery with new system giving higher resolution height data
- Ground truth to confirm identification of oak and calabash trees
- Reduce time to analyze imagery by using nested plots: 1 ha for all pine trees, 0.1 ha for small broadleaf trees; 0.01 ha for shrubs,palmettos, grasses
- Refine model of total biomass carbon versus pine crown area

Compare cost of imagery method with direct field method

Imagery method:

- Track person-hours to collect and analyze imagery and field data
- Track person-hours to combine both sets of data for sufficient number of plots to reach precision of 10% of mean with 95% confidence
- Estimate total fixed and variable costs
- Estimate likely cost for monitoring next event and for estimating change in carbon stocks
 - If model of biomass per ha versus pine crown area holds with new data, measure pine crown area only in subsequent monitoring periods
 - Thus will only need to collect and analyze imagery for pine trees, with considerable time savings

Compare cost of imagery method with direct field method

Direct field method:

- Track-person hours to collect and analyze field data using standard field protocols for a given number of plots
- Use the CV of the plot data to estimate number of plots needed to reach same level of precision as imagery method
- Estimate total fixed and variable cost to measure all required number of plots at time one
- Estimate total fixed and variable cost to monitor next event to estimate change in carbon stocks